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via P. Giura 1, 10125 Torino, Italy
c Department of Oncological Sciences and Division of Molecular Angiogenesis, Institute for Cancer Research and Treatment,

University of Torino School of Medicine, Strada Provinciale 142 Km 3.95, 10060 Candiolo (TO), Italy

Received 4 August 2006; received in revised form 22 January 2007; accepted 20 March 2007
Available online 11 April 2007
Abstract

Blood vessel networks form by spontaneous aggregation of individual cells migrating toward vascularization sites (vas-
culogenesis). A successful theoretical model of two-dimensional experimental vasculogenesis has been recently proposed,
showing the relevance of percolation concepts and of cell cross-talk (chemotactic autocrine loop) to the understanding of
this self-aggregation process. Here we study the natural 3D extension of the computational model proposed earlier, which
is relevant for the investigation of the genuinely three-dimensional process of vasculogenesis in vertebrate embryos. The
computational model is based on a multidimensional Burgers equation coupled with a reaction diffusion equation for a
chemotactic factor and a mass conservation law. The numerical approximation of the computational model is obtained
by high order relaxed schemes. Space and time discretization are performed by using TVD schemes and, respectively,
IMEX schemes. Due to the computational costs of realistic simulations, we have implemented the numerical algorithm
on a cluster for parallel computation. Starting from initial conditions mimicking the experimentally observed ones, numer-
ical simulations produce network-like structures qualitatively similar to those observed in the early stages of in vivo vas-
culogenesis. We develop the computation of critical percolative indices as a robust measure of the network geometry as a
first step towards the comparison of computational and experimental data.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

In recent years, biologists have collected many qualitative and quantitative data on the behavior of micro-
scopic components of living beings. We are, however, still far from understanding in detail how these micro-
scopic components interact to build functions which are essential for life. A problem of particular interest
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which has been extensively investigated is the formation of patterns in biological tissues [2]. Such patterns
often show self-similarity and scaling laws [18] similar to those emerging in the physics of phase transitions
[26].

The vascular network [28,29] is a typical example of a natural structure characterized by non-trivial scaling
laws. In recent years many experimental investigations have been performed on the mechanism of blood vessel
formation [6] both in living beings and in in vitro experiments. Vascular networks form by spontaneous aggre-
gation of individual cells traveling toward vascularization sites (vasculogenesis). A successful theoretical
model of two-dimensional experimental vasculogenesis has been recently proposed, showing the relevance
of percolation concepts and of cell cross-talk (chemotactic autocrine loop) to the understanding of this self-
aggregation process.

Theoretical and computational modelling is useful in testing biological hypotheses in order to explain which
kind of coordinated dynamics gives origin to the observed highly structured tissue patterns. One can develop
computational models based on simple dynamical principles and test whether they are able to reproduce the
experimentally observed features. If the basic dynamical principles are correctly chosen, computational exper-
iments allow to observe the emergence of complex structures from a multiplicity of interactions following sim-
ple rules.

Apart from the purely theoretical interest, reproducing biological dynamics by computational models
allows to identify biochemical and biophysical parameters which are the most important in driving the pro-
cess. This way, computational models can produce a deeper understanding of biological mechanisms, which
in principle may end up having relevant practical consequences. It is worth noticing here that a complete
understanding of the vascularization process is possible only if it is considered in its natural three-dimensional
setting [1,7].

In this paper we illustrate computational results regarding the simulation of vascular network formation in
a three-dimensional environment. We consider the three-dimensional version of the model proposed in [10,23].
The model is based on a Burgers-like equation, a well studied paradigm in the theory of pattern formation,
integrated with a feedback term describing the chemotactic autocrine loop. The numerical evolution of the
computational model, starting from initial conditions mimicking the experimentally observed ones, produces
network-like structures qualitatively similar to those observed in the early stages of in vivo vasculogenesis.

Since in the long run we are interested in developing a quantitative comparison between experimental data
and theoretical model, we start by selecting a set of observable quantities providing robust quantitative infor-
mation on the network geometry. The lesson learned from the study of two-dimensional vasculogenesis is that
percolative exponents [27] are an interesting set of such observables, so we test the computation of percolative
exponents on simulated network structures.

A thorough quantitative comparison of the geometrical properties of experimental and computational net-
work structures will become possible as soon as an adequate amount of experimental data, allowing proper
statistical computation, will become available.

The paper is organized as follows: Section 2 summarizes some background knowledge on the biological
problem of vascular network formation. Section 3 is a short review of the properties of the model introduced
in [10,23]. In Section 4 the numerical approximation technique for the model is described. In Section 5 we
describe the qualitative properties of simulated network structures and present the results of the computation
of the exponents of the percolative transition. Finally, in the Conclusions, we point out predictable develop-
ments of our research.

2. Biological background

To supply tissues with nutrients in an optimal way, vertebrates have developed a hierarchical vascular sys-
tem which terminates in a network of size-invariant units, i.e. capillaries. Capillary networks characterized by
inter capillary distances ranging from 50 to 300 lm are essential for optimal metabolic exchange [11].

Capillaries are made of endothelial cells. Their growth is essentially driven by two processes: vasculogenesis
and angiogenesis [6]. Vasculogenesis consists of local differentiation of precursor cells to endothelial ones, that
assemble into a vascular network by directed migration and cohesion. Angiogenesis is essentially characterized
by sprouting of novel structures and their remodelling.
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In two-dimensional assays, the process of formation of a vascular network starting from randomly seeded
cells can be accurately tracked by video microscopy [10] and it is observed to proceed along three main stages:
(i) migration and early network formation, (ii) network remodelling and (iii) differentiation in tubular struc-
tures. During the first phase, which is the most important for determining the final geometrical properties of
the structures, cells migrate over distances which are an order of magnitude larger than their radius and aggre-
gate when they adhere with one of their neighbours. An accurate statistics of individual cells trajectories has
been presented in [10], showing that, in the first stage of the dynamics, cell motion has marked directional per-
sistence, pointing toward zones of higher cell concentration. This indicates that cells communicate through the
emission of soluble chemical factors that diffuse (and degrade) in the surrounding medium, moving toward the
gradients of this chemical field. Cells behave like indirectly interacting particles, the interaction being mediated
by the release of soluble chemotactic factors. Their dynamics is well reproduced by the theoretical model pro-
posed in [10].

The lessons learned from the study of in vitro vasculogenesis is thus that the formation of experimentally
observed structures can be explained as the consequence of cell motility and of cell cross-talk mediated by
the exchange of soluble chemical factors (chemotactic autocrine loop). The theoretical model also shows
that the main factors determining the qualitative properties of the observed vascular structures are the avail-
able cell density and the diffusivity and half-life of the soluble chemoattractant. It seems that only the
dynamical rules followed by the individual cell are actually encoded in the genes. The interplay of these sim-
ple dynamical rules with the geometrical and physical properties of the environment produces the highly
structured final result.
Fig. 1. Vascular networks formed by vasculogenesis in chick embryo brain, at various stages of development, classified according to
Hamilton and Hamburger (HH). (a) HH stage 17, corresponding to 52–64 h; (b) HH stage 20 (70–72 h); (c and d) HH stage 26 (5 days).
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At the moment, no direct observation of the chemotactic autocrine loop regulating vascular network for-
mation is available, although several indirect biochemical observations point to it, so, the main evidence in this
sense still comes from the theoretical analysis of computational models.

Today several major developments in three-dimensional cell culture and in cell and tissue imaging allow the
observation of the mechanisms of cell migration and aggregation in three-dimensional settings in real time
[9,21].

In the embryo, endothelial cells are produced and migrate in a three-dimensional scaffold, the extracellular
matrix. Migration is actually performed through a series of biochemical processes, such as sensing of chemo-
tactic gradients, and of mechanical operations, such as extensions, contractions, and degradation of the extra-
cellular matrix along the way.

The evidence provided by two-dimensional experimental vasculogenesis suggests that cell motion can be
directed by an autocrine loop of soluble chemoattractant factors also in the real three-dimensional
environment.

As a sample of typical vascular structures that are observed in a three-dimensional setting in the early stages
of development of a living being, we include here (750 lm)2 images of chick embryo brain at different devel-
opment stages (Fig. 1). At an early stage (about 52–64 h) one observes a typical immature vascular network
formed by vasculogenesis and characterized by a high density of similar blood vessels (Fig. 1a). At the next
stage (70–72 h) we observe initial remodelling of the vascular network (Fig. 1b and c). Remodelling becomes
more evident when the embryo is 5 days old, when blood vessels are organized in a mature, hierarchically
organized vascular tree (Fig. 1d).

The mathematical model described in this paper is about the formation of an early network (like the one in
Fig. 1a). The other pictures are shown to illustrate the successive development towards a hierarchical fully
functional vascular network. In any case, a good prediction of the formation of the early vascular network
is essential for understanding the subsequent remodelling.

3. Mathematical model of blood vessel growth

The multidimensional Burgers’ equation is a well-known paradigm in the study of pattern formation. It
gives a coarse grained hydrodynamic description of the motion of independent agents performing rectilinear
motion and interacting only at very short ranges. These equations have been utilized to describe the emergence
of structured patterns in many different physical settings (see e.g. [24,15]). In the early stages of dynamics, each
particle moves with a constant velocity, given by a random statistical distribution. This motion gives rise to
intersection of trajectories and formation of shock waves. After the birth of these local singularities, regions
of high density grow and form a peculiar network-like structure. The main feature of this structure is the exis-
tence of comparatively thin layers and filaments of high density that separate large low-density regions.

In order to study and identify the factors influencing blood vessel formation one has to take into account
evidence suggesting that cells do not behave as independent agents, but rather exchange information in the
form of soluble chemical factors. This leads to the model proposed by Gamba et al. [10] and Serini et al.
[23]. The model describes the motion of a fluid of randomly seeded independent particles which communicate
through emission and absorption of a soluble factor and move toward its concentration gradients.

3.1. Model equations

The cell population is described by a continuous density nðx; tÞ, where x 2 Rd (d = 2,3) is the space variable,
and t P 0 is the time variable. The population density moves with velocities vðx; tÞ, that are stimulated by
chemical gradients of a soluble factor. The chemoattractant soluble factor is described by a scalar chemical
concentration field cðx; tÞ. It is supposed to be released by the cells, diffuse, and degrade in a finite time, in
agreement with experimental observations.

The dynamics of the cell density can be described by coupling three equations. The first one is the mass
conservation law for cell matter, which expresses the conservation of the number of cells. The second one
is a momentum balance law that takes into account the phenomenological chemotactic force, the dissipation
by interaction with the substrate, the phenomenon of cell directional persistency along their trajectories and a
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term implementing an excluded volume constraint [10,3]. Finally there is a reaction-diffusion equation for the
production, degradation and diffusion of the concentration of the chemotactic factor. One then has the follow-
ing system:
on
ot
þr � ðnvÞ ¼ 0 ð1aÞ

ov

ot
þ v � rv ¼ lðcÞrc�r/ðnÞ � bðcÞv ð1bÞ

oc
ot
¼ DDcþ aðcÞn� c

s
ð1cÞ
where l measures the cell response to the chemotactic factor, while D and s are respectively the diffusion coef-
ficient and the characteristic degradation time of the soluble chemoattractant. The function a determines the
rate of release of the chemical factor. The friction term �bv mimics the dissipative interaction of the cells with
the extracellular matrix.

A simple model can be obtained by assuming that the cell sensitivity l, the rate of release of the chemoat-
tractant a and the friction coefficient b are constant. A more realistic description may be obtained including
saturation effects as functional dependencies of the aforementioned coefficients on the concentration c. We
point out that l determines the time scale of the evolutionary process, i.e. the time elapsed before the station-
ary state is reached.

The term $/(n) is a density-dependent pressure term, where /(n) is zero for low densities, and increases for
densities above a suitable threshold. This pressure is a phenomenological term which models short range inter-
action between cells and the fact that cells do not interpenetrate.

We observe that, at low density n and for small chemoattractive gradients, (1b) is an inviscid Burgers’ equa-
tion for the velocity field v [5], coupled to the standard reaction-diffusion equation (1c) and the mass conser-
vation law (1a).

Since in the early stages of development almost all intraembryonic mesodermal tissues contain migrating
endothelial precursors, we use initial conditions representing a randomly scattered distribution of cells, i.e.,
we throw an assigned number of cells in random positions inside the cubic box, with zero initial velocities
and zero initial concentration of the soluble factor, with a single cell given initially by a Gaussian bump of
width r of the order of the average cell radius (.15 lm) and unitary weight in the integrated cell density
field n.

In order to model the fact that closely packed cells resist to compression, a phenomenological, density
dependent, pressure $/(n) acting only when cells become close enough to each other is introduced. The poten-
tial / has to be monotonically increasing and constant for n < n0 where n0 is the close-packing density. For
simplicity we choose the functional form
/ðnÞ ¼ Bpðn� n0ÞCp n > n0

0 n 6 n0

(
ð2Þ
3.2. Parameter values

Fourier analysis of Eq. (1c) with constant parameters and in the fast diffusion approximation oc/ot = 0 sug-
gests that starting from the aforementioned initial conditions, system (1) should develop network patterns
characterized by a typical length scale r0 ¼

ffiffiffiffiffiffi
Ds
p

, which is the effective range of the interaction mediated by
soluble factors. As a matter of fact, Fourier components ĉk of the chemical field are related to the Fourier
components of the density field n̂k by the relation
ĉk ¼
asn̂k

Dsk2 þ 1
:

This means that in system (1) wavelengths of the field n of order r0 are amplified, while wavelengths k� r0 or
k� r0 are suppressed.
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Initial conditions introduce in the problem a typical length scale given by the average cell–cell distance
L=

ffiffiffiffi
N
p

, where L is the system size and N the particle number. The dynamics, filtering wavelengths [8], rear-
ranges the matter and forms a network characterized by the typical length scale r0.

It is interesting to check the compatibility of the theoretical prediction with physical data. From available
experimental results [22] it is known that the order of magnitude of the diffusion coefficient for major angio-
genic growth factors is D = 10�7 cm2 s�1. In the experimental conditions that were considered in [10] the half-
life of soluble factors is 64 ± 7 min. This gives r0 � 200 lm, a value in good agreement with experimental
observations.
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Fig. 2. Bump coalescence driven by chemotactic force and pressure. The density and velocity fields at subsequent instants of time are
shown. Left column: Cp = 3 and Bp = 10�3, leading to bump coalescence. Right column: Cp = 2 and Bp = 10�1, leading to undesired
rebound of the two bumps.
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3.3. Lower dimensional models

In order to get some intuition about the typical system dynamics, we exploit the 1D version of model (1) to
simulate the ‘‘collision’’ of two cells. We verified numerically that for Bp < 10�2 and Cp > 2.5 in (2), the two
bumps merge into a single one (see Fig. 2 left) which appears to be stationary, as suggested also by the graphs
of the kinetic energy and of the momentum of inertia (Fig. 3 top). On the other hand a less smooth onset of
pressure obtained with larger Bp or smaller Cp leads to forces overcoming the chemical attractive ones, making
the two bumps bounce back (Fig. 2 right, Fig. 3 bottom). We observe that the dynamics that better reproduces
the biological behavior is the one where the two bumps coalesce.

Biological observations suggest that the dynamics of cell changes when they establish cell–cell contacts. It is
reasonable to suppose that a different genetic program is activated at this moment, disabling cell motility. We
therefore switch off cell motility as soon as the cell concentration, signalled by chemoattractant emission,
reaches a given threshold. In this way the computational system is guaranteed to reach a stationary state.

These effects can be taken into account using a non-constant sensitivity l(c), a non-linear emission rate a(c),
or a variable friction coefficient b(c). We choose a threshold c0 and functions of the form
Fig. 3.
to bum
lðcÞ ¼ l0½1� tanhðc� c0Þ� ð3aÞ
aðcÞ ¼ a0½1� tanhðc� c0Þ� ð3bÞ
bðcÞ ¼ b0½1þ tanhðc� c0Þ� ð3cÞ
0

0.5

1 x 10
–10

K
in

et
ic

 E
n

er
g

y

0 100 200 300 400 500 600 700 800 900 1000
0

0.005

0.01

M
o

m
en

t 
o

f 
In

er
ti

a

100
0

1

2

3

4

5

6

7
x 10

–8

K
in

et
ic

 E
n

er
g

y

0 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

6

7
x 10

–3

M
o

m
en

t 
o

f 
In

er
ti

a

Time evolution of the kinetic energy (solid line) and of the momentum of inertia (dashed line). Top: Cp = 3 and Bp = 10�3, leading
p coalescence. Bottom: Cp = 2 and Bp = 10�1, leading to undesired rebound of the two bumps.
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The effect of the first two terms is that the sensitivity of the cells and their chemoattractant production is
strongly damped when the concentration c reaches the threshold c0. We did not observe a significant depen-
dence on the exact form of the damping function, provided that it approximates a step function that is nonzero
only when c < c0.

b(c), on the other hand has the effect of turning on a strong friction term at locations of high chemoattrac-
tant concentration. We performed several tests and observed that the different choices (3) are approximately
equivalent in freezing the system into a network-like stationary state.

4. Numerical methods

Our numerical scheme is based on a suitable relaxation approximation [13] of the mass conservation law
(1a) and the multidimensional Burgers equation (1b) coupled with a second order finite-differences method
for the reaction-diffusion equation (1c) of the chemotactic factor. We point out that also for the last Eq.
(1c) we could consider a relaxation approximation [14,19] in order to deal with the system (1) in an uniform
way, but we prefer to adopt here a simpler approach.

We first briefly review an extension of the approach proposed by Jin and Xin in [13] for a scalar conserva-
tion law to the case when a source term is present
ou
ot
þ o

ox
f ðuÞ ¼ gðuÞ: ð4Þ
Introducing an auxiliary variable j that plays the role of a physical flux we consider the following relaxation
system:
ou
ot
þ oj

ox
¼ gðuÞ ð5aÞ

oj
ot
þ a

ou
ox
¼ � 1

�
ðj� f ðuÞÞ; ð5bÞ
where � is a small positive parameter, called relaxation time, and a is a suitable positive constant. Formally,
Chapman–Enskog expansion justifies the agreement of the solutions of the relaxation system with the solu-
tions of the equation
ou
ot
þ o

ox
f ðuÞ ¼ gðuÞ þ � o

ox
ða� f 0ðuÞ2Þ ou

ox

� �
; ð6Þ
which is a first order approximation of the original balance law (4).
It is also clear that (6) is dissipative, provided that the subcharacteristic condition a > f 0(u)2 is satisfied. We

would expect that appropriate numerical discretization of the relaxation system (5) yields accurate approxima-
tion to the original Eq. (4) when the relaxation parameter � is sufficiently small.

In view of its numerical approximation, the main advantage of the relaxation system (5) over the original
equation (4) lies in the linear structure of the characteristic fields and in the localized low order term and this
avoids the use of time consuming Riemann solvers. Moreover, proper implicit time discretization can be
exploited to overcome the stability constraints due to the stiffness and to avoid the use of non-linear solvers.

We observe that system (5) is in the form
oz
ot
þ divf ðzÞ ¼ gðzÞ þ 1

�
hðzÞ; ð7Þ
where z = (u, j)T, f(z) = (j,au)T,g(z) = (g(u), 0)T and h(z) = (0, j � f(u))T. When e is small, the presence of both
non-stiff and stiff terms, suggests the use of IMEX schemes [4,16,20].

Assume for simplicity to adopt a uniform time step Dt and denote with zn the numerical approximation at
time tn = nDt, for n ¼ 0; 1; . . . In our case a m-stages IMEX scheme reads
znþ1 ¼ zn � Dt
Xm

i¼1

~bi
of
ox
ðzðiÞÞ þ gðzðiÞÞ

� �
þ Dt

e

Xm

i¼1

bihðzðiÞÞ;
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where the stage values are computed as
zðiÞ ¼ zn � Dt
Xi�1

k¼1

~ai;k
of
ox
ðzðkÞÞ þ gðzðkÞÞ

� �
þ Dt

e

Xi

k¼1

ai;khðzðkÞÞ
Here (aik,bi) and ð~aik; ~biÞ are a pair of Butcher’s tableaux of, respectively, a diagonally implicit and an explicit
Runge–Kutta schemes.

In this work we use the so-called relaxed schemes that are obtained letting e! 0 in the numerical scheme
for (7). For these, the first stage
uð1Þ

jð1Þ

" #
¼

un

jn

� �
þ Dt

e
a1;1h

uð1Þ

jð1Þ

" # !
becomes
uð1Þ ¼ un jð1Þ ¼ f ðuð1ÞÞ;
then it reduces to h(z(1)) = 0. The second stage, i = 2, now reads
zð2Þ ¼ zn � Dt~a2;1

of
ox
ðzð1ÞÞ þ gðzð1ÞÞ

� �
þ Dt

e
a2;1 hðzð1ÞÞ|fflffl{zfflffl}

�0

þDt
e

a2;2hðzð2ÞÞ
which implies that h(z(2)) = 0.
Summarizing, the relaxed scheme yields an alternation of relaxation steps
hðzðiÞÞ ¼ 0 i:e: jðiÞ ¼ f ðuðiÞÞ

and transport steps where we advance for time ~ai;kDt
oz
ot
þ divf ðzÞ ¼ gðzÞ
with initial data z = z(i) retain only the first component and assign it to u(i+1).
Finally the value of un+1 is computed as un þ

P ~biuðiÞ.
In order to obtain a relaxation approximation of the first and second equation of (1) we rewrite them in

conservative form, introducing the moment pðx; tÞ ¼ nðx; tÞvðx; tÞ:

on
ot
þr � p ¼ 0 ð8aÞ

op

ot
þr � ðnv	 vÞ ¼ nlrc� nr/ðnÞ � bp ð8bÞ
Introducing the variable u ¼ ðn; pÞT and the auxiliary flux w, the relaxation system reads
ou

ot
þr � w ¼ Gðu;w; cÞ ð9aÞ

ow

ot
þ Ar � u ¼ � 1

e
ðw� F ðuÞÞ ð9bÞ
where Gðu;w; cÞ ¼ ð0; nlrc� nr/ðnÞ � bpÞT, F ðuÞ ¼ ðp; nv	 vÞ and A is a suitable diagonal matrix whose
positive diagonal elements verify a subcharacteristic condition [13] in order to ensure the dissipativity of
the relaxation system.

For a one-dimensional scalar conservation law ut + f(u)x = 0, A is a scalar and such condition reads
A P jf 0(u)j2 [13]. In the present case, it is sufficient that the entries of the diagonal matrix A be greater or equal
than the eigenvalues of the Jacobian of the flux F, which for system (9) are the three components of the veloc-
ity v. Hence we choose Aii = max(vi) at each time step, in order to reduce the numerical diffusion, which arises
when the choice of A is non-optimal, see [13].
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As we previously remarked, our relaxed scheme takes alternatively an implicit step and an explicit one: the
explicit step involves the computation of the flux $ Æ w and the evaluation of the non-stiff source term G. In
particular we compute $c and $/(n) using a second order centered difference scheme.

In the following we describe for simplicity the fully discrete scheme in one-dimensional case. We introduce
the spatial grid points xj with uniform mesh width h = xj+1 � xj. As usual, we denote by un

j the approximate
cell average of a quantity u in the cell [xj�1/2,xj+1/2] at time tn and by un

jþ1=2 the approximate point value of u at
x = xj+1/2 and t = tn. A spatial discretization to (9) in conservation form can be written as
ouj

ot
þ 1

h
ðwjþ1=2 � wj�1=2Þ ¼ Gðuj;wj; cjÞ ð10aÞ

owj

ot
þ 1

h
Aðujþ1=2 � uj�1=2Þ ¼ �

1

e
ðwj � F ðujÞÞ: ð10bÞ
In order to compute the numerical fluxes wj±1/2, we consider the characteristic variables w ± A1/2u that travel
with constant velocities ±A1/2, and so the semidiscrete system becomes diagonal. Now we have to apply a
numerical approximation to w ± A1/2u. A first idea could be to apply a ENO or WENO approach (see e.g.
[25]), to build an high order reconstruction, coupled with a suitable IMEX scheme. The drawback is the high
computational costs, especially in a multidimensional framework. Therefore we chose a suitable compromise
between the computational cost and the accuracy, using a second order TVD scheme. The numerical flux that
we use is obtained coupling an upwind scheme and the Lax–Wendroff method by a non-linear flux limiter [17].
Namely the high order flux F(U) for a generic variable U consists of the low order term FL(U) plus a second
order correction FH(U):
F ðUÞ ¼ F LðUÞ þWðUÞðF HðUÞ � F LðUÞÞ

where W is the flux limiter. When the data U is smooth, then W(U) should be near 1, while near a discontinuity
we want W(U) close to 0. The idea consists in the selection of a high order flux FH that works well in smooth
regions and of a low order flux FL which behaves well near discontinuities.

In our schemes we considered the upwind scheme as a low order flux for the characteristic variables
F Lððwþ A1=2uÞjþ1=2Þ ¼ ðwþ A1=2uÞj; F Lððw� A1=2uÞjþ1=2Þ ¼ ðw� A1=2uÞjþ1
and the Lax–Wendroff scheme as a high order flux for the same variables
F Hððw
 A1=2uÞjþ1=2Þ ¼
A1=2

2
ððw
 A1=2uÞjþ1 þ ðw
 A1=2uÞjÞ �

kA1=2

2
ððw
 A1=2uÞjþ1 � ðw
 A1=2uÞjÞ
where k = Dt/h (we advance of one time step).
Letting
H
j ¼
ðw
 A1=2uÞnj � ðw
 A1=2uÞnj�1

ðw
 A1=2uÞnjþ1 � ðw
 A1=2uÞnj

 !
1

;

the fully discrete scheme for the variable u using Euler method to advance in time is the following
unþ1
j ¼ un

j þ
kA1=2

2
ðun

jþ1 � 2un
j þ un

j�1Þ �
k
2
ðwn

jþ1 � wn
j�1ÞDt

I� kA1=2

4
ð�sþj þ sþj�1 þ s�jþ1 � s�j Þ;
with
s
j ¼
1

h
ð
A1=2un

j
1 þ wn
j
1 � A1=2un

j � wn
j ÞWðH
j Þ: ð11Þ
After the substitution of the relaxation step we get
unþ1
j ¼ un

j þ
kA1=2

2
ðun

jþ1 � 2un
j þ un

j�1Þ �
k
2
ðF ðun

jþ1Þ � F ðun
jþ1ÞÞDt

I� kA1=2

4
ð�sþj þ sþj�1 þ s�jþ1 � s�j Þ;
where s± is obtained from (11) letting w = F(u). The scheme can be put in a conservative form and it is possible
to prove its consistency by standard technique [17]. In order to prove a TVD stability, we write
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unþ1
jþ1 � unþ1

j ¼ ð1� Cn
j �Dn

j Þðun
jþ1 � un

j Þ þ Cn
j�1ðun

j � un
j�1Þ þDn

jþ1ðun
jþ2 � un

jþ1Þ þ Ejþ1=2; ð12Þ
where
Cn
j ¼

k
2

A1=2 þ
F ðun

jþ1Þ � F ðun
j Þ

un
jþ1 � un

j

 !

Dn
j ¼

k
2

A1=2 �
F ðun

jþ1Þ � F ðun
j Þ

un
jþ1 � un

j

 !

En
jþ1=2 ¼ Dt

1� kA1=2

4
ðs�jþ2 � 2s�jþ1 þ s�j � sþjþ1 þ 2sþj � sþj�1Þ
where we notice that C and D are non-negative.
The coefficient E can be written in terms of C and D, in fact
sþj ¼
2

kDx
Cn

i WðH
þ
i Þðun

jþ1 � un
j Þ; s�j ¼ �

2

kDx
Dn

i�1WðH
�
i Þðun

j � un
j�1Þ:
We can rewrite (12) in the following form
unþ1
jþ1 � unþ1

j ¼ ðun
jþ1 � un

j Þ½ð1� Cn
j �Dn

j Þ þ ð1� kA1=2ÞðDn
j W
�
jþ1 þ Cn

j W
þ
j Þ�

þ ðun
j � un

j�1Þ Cn
j�1 �

1� kA1=2

2
ðDn

j�1W
�
j þ Cn

j�1W
þ
j�1Þ

� �
þ ðun

jþ2 � un
jþ1Þ Dn

jþ1 �
1� kA1=2

2
ðDn

jþ1W
�
jþ2 þ Cn

jþ1W
þ
jþ1Þ

� �
ð13Þ
It’s easy to see that under the CFL condition kk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxfaig

p
k 6 1, where ai are the positive diagonal elements of

the matrix A, and using the fact that the flux limiter verifies
0 6
WðHÞ

H
6 2; 0 6 WðHÞ 6 2;
we have
ð1� Cn
j �Dn

j Þ þ ð1� kA1=2ÞðDn
j W
�
jþ1 þ Cn

j W
þ
j ÞP 0

Cn
j�1 �

1� kA1=2

2
ðDn

j�1W
�
j þ Cn

j�1W
þ
j�1ÞP 0

Dn
jþ1 �

1� kA1=2

2
ðDn

jþ1W
�
jþ2 þ Cn

jþ1W
þ
jþ1ÞP 0
and so we can deduce that our scheme is TVD stable from Harten’s Theorem [12].
In the case of multidimensions, a similar discretization can be applied to each space dimension [13,14,19].

Then, since the structure of the multidimensional relaxation system is similar to the 1D system, the numerical
implementation for higher dimensional problems, based on additive dimensional splitting, is not much harder
than for 1D problems.

The time step Dt is chosen adaptively as follows. As explained above, the stability of the relaxed scheme for
(8) requires that the CFL condition
Dt 6
h

maxðaiÞ
¼ h

maxðviÞ

be satisfied. On the other hand an explicit scheme for the diffusion operator would require a time step restric-
tion of the form Dt 6 h2/6D, where D is the diffusion coefficient, which is approximately 10�7 cm2 s�1 in our
case. As the above condition becomes too restrictive when the mesh size is reduced (around N > 100 points per
side), we employ the implicit Euler scheme for the diffusion equation and choose Dt at each time step accord-
ingly to the hyperbolic CFL condition only.
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In order to study the accuracy of the numerical scheme in the three-dimensional case, we analyzed the
behavior of the error under mesh refinement. First we computed a reference solution by considering a mesh
with 2563 points, with 2900 cells and final time t = 60. We then interpolated the initial datum of the reference
solution on grids with 643; 1003; 1283; 1503; 1803; 2003 points and performed the simulation with the same final
time on these coarser grids. The final solution was compared with the reference one by computing the L1 and
L2 norms of the error in the variable n. The errors and convergence rates are shown in Fig. 4.

For our three-dimensional problem the computational cost is quite high and can be reduced using parallel
computing: the semilinearity of relaxation systems, together with our suitably chosen discretizations, provides
parallel algorithm with almost optimal scaling properties. In particular the domain is divided in smaller sub-
domains and each subdomain is assigned to a processor. The computations of all non-linear terms involve
only pointwise evaluations and it is easy to perform these tasks in a local way. Only point near the interfaces
between different subdomain need to be communicated in the transport step. We implemented these algorithm
on a high performance cluster for parallel computation installed at the Department of Mathematics of the
University of Milano (http://cluster.mat.unimi.it/). The scaling properties of the algorithm are shown in
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Fig. 4. Table of the L2 and L1 errors and convergence rates and graph of the L2 errors with respect to the mesh size h = 1/N (the dashed
line corresponds to second order convergence rate).
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Fig. 5 and are essentially due to the exclusive use of matrix-vectors operations and to the avoidance of solvers
for linear or non-linear systems.

5. Numerical results

We perform three-dimensional numerical simulations of model (1) on a cubic box with side of length
L = 1 mm, with periodic boundary conditions. The initial condition is assigned in the form of a set of Gauss-
ian bumps with r = 15 lm scattered in the cube with uniform probability and having zero initial velocity.

Biochemical data [23] suggest the values D = 10�7 cm2 s�1 and s = 4000 s for the diffusion constant and the
chemoattractant decay rate. We fix the other constant parameters by dimensional analysis and fitting to the
characteristic scales of the biological system. In particular, we choose: l0 = 10�11 mm4/s3, a = 1 s�1,
b = 10�3 s�1. For the coefficients in the expression (2) of the pressure function / we take n0 = 1.0, Cp = 3
and Bp = 10�3.

Very fine grids have to be used in order to resolve the details of the n(x, t) field, which may contain hundreds
of small bumps, each representing a single cell. Since each cell has radius r = 15 lm, one needs a grid spacing
such that Dx < 10 lm and therefore grids of at least 1003 cells for a cubic domain of 1 mm side.

We performed numerical simulations with varying initial average cell density �n. We observed that the ini-
tially randomly distributed cells (Fig. 6) coalesce forming elongated structures (Fig. 7) and evolve towards a
stationary state (Fig. 8) mimicking the geometry of a blood vessel network in the early stages of formation.
The figures show an isosurface of the density variable n, together with two cross-section density plots.

We assigned �n in the range 2100–3500 cells/mm3 and performed 10–15 runs for each density value with a
128 · 128 · 128 grid on a biological system of 1 mm3. The characteristic lengths and geometrical properties of
Fig. 6. Initial state of a numerical simulation with 2500 cells/mm3. The colorbar on the right is referred to the coloring of the cross
sections. The red three-dimensional isosurface corresponds to the black contour lines in the cross sections (t = 0).



Fig. 7. Transient state of the evolution of the initial state depicted in Fig. 6 according to model (1). The initial formation of network-like
structures is observed (t = 40).
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the stationary state depend on �n and we observed a percolative phase transition similar to the one described in
[10] for the two-dimensional case.

5.1. Analysis of the percolative phase transition

In experimental blood vessel formation it has been shown that a percolative transition is observed, by vary-
ing the initial cell density [10]. For low cell densities only isolated clusters of endothelial cells are observed,
while for very high densities cells fill the whole available space. In between these two extreme behaviours, close
to a critical cell density nc, one observes the formation of critical percolating clusters connecting opposite sides
of the domain, characterized by well defined scaling laws and exponents. These exponents are known not to
depend on the microscopic details of the process while their values characterize different classes of aggregation
dynamics [27,10].

The purely geometric problem of percolation is actually one of the simplest phase transitions occurring in
nature. Many percolative models show a second order phase transition at a critical value nc of the average
density �n, i.e. the probability P of observing an infinite, percolating cluster is 0 for �n < nc and 1 for �n > nc

[27]. The phase transition can be studied by focusing on the values of an order parameter, i.e. an observable
quantity that is zero before the transition and takes on values of order 1 after it. In a percolation problem the
natural order parameter is the probability P that a randomly chosen site belongs to the infinite cluster (on
finite grids, the infinite cluster is substituted by the largest one).

In the vicinity of the critical density nc the geometric properties of clusters show a peculiar scaling behavior.
For instance, in a system of linear finite size L, the probability of percolation Pðn; LÞ, defined empirically as
the fraction of computational experiments that produce a percolating cluster, is actually a function of the com-
bination (n � nc) L1/m, where m is a universal exponent [27].



Fig. 8. Stationary state of the evolution of the states depicted in Figs. 6 and 7 according to model (1). Well developed three-dimensional
network-like structures are observed (t = 60).

Fig. 9. Cluster percolation with cell density n = 2500 cells/mm3. We show some connected clusters in a realization of model (1). The
largest cluster shown in red is a percolating cluster.
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In a neighborhood of the critical point and on a system of finite size L, the following finite size scaling rela-
tions is also observed:
Fig
Pð�n; LÞ � bP½ð�n� ncÞL1=m� ð14Þ

There are two main reasons to study percolation in relation to vascular network formation: (i) percolation is a
fundamental property for vascular networks, since blood should have the possibility to travel across the whole
vascular network to carry nutrients to tissues; (ii) critical exponents are robust observables characterizing the
aggregation dynamics.

A rather complete characterization of percolative exponents in the two-dimensional case has been provided
in [10].
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As a first step in the study of the more realistic three-dimensional case, we compute the exponent m char-
acterizing the structures produced by the model dynamics (1) with varying initial cell density.

To this aim, extensive numerical simulation of system (1) were performed using lattice sizes
L ¼ 1; 0:78; 0:62; 0:5 mm, with different values of the initial density �n. For each point 10–15 realizations of
the system of size 1 mm were computed, depending on the proximity to the critical point.

The continuous density at final time n(x) was then mapped to a set of occupied and empty sites by choosing
a threshold n0. Each region of adjacent occupied sites (cluster) was marked with a different index. The perco-
lation probability P for each set of realizations was then measured. In Fig. 9 we show clusters obtained in a
box with L = 0.5 mm with �n ¼ 3100. The largest percolating cluster is shown in red, together with some other
smaller clusters shown in different colors.

Using relation (14), we estimate the position of the critical point nc and the value of the critical exponent m.
The data for different box side length and initial density should lie on a single curve after rescaling the densities
as n̂ ¼ ð�n� ncÞL1=m. For fixed nc and m we rescale �n and fit the data with a logistic curve, then compute the dis-
tance of the data from the curve. The squared distance is minimized to obtain estimates for nc and m.

Using n0 = 0.35 we obtain nc = 2658 and m = 0.84 (the data collapse in shown in Fig. 10). This latter value is
compatible with the known value 0.88 for random percolation in three dimensions [27].

6. Conclusions

Understanding the dynamical process of vascularization is an important challenge for contemporary biol-
ogy, which has clinical implications, like the possibility of testing medical treatments in silico. Recent biolog-
ical research suggests that morphogenetic processes should be studied in their intrinsic three-dimensional
setting, where peculiar effects are observable, which are lost in lower dimensional models. Progress in visual-
ization and experimental techniques is on the other hand making possible to get real three-dimensional data of
this process.

Taking into account directed cell motility and an autocrine loop of chemoattractant signalling, a differential
model can be formulated. It is relevant to check whether this model is able to reproduce the main features of
the natural process. This requires the implementation of an efficient numerical scheme to integrate a genuinely
three-dimensional mixed system consisting of a reaction-diffusion equation coupled with hyperbolic balance
laws. We showed that this difficult numerical task can be effectively implemented by using a novel coupling
of relaxed schemes with difference methods for diffusion operators. Moreover we provide a TVD stability
analysis for the numerical fluxes in the one-dimensional setting. Our results provide a satisfactory validation
of the theoretical model in that percolating network-like structures similar to those observed experimentally
are reproduced. It is worth observing here that percolation is a non-trivial property of a blood vessel network,
fundamental for its proper functioning.

As a starting point towards a quantitative comparison between experimental data and the theoretical model
we need to select a set of observables which provide robust quantitative information on the network geometry.
The lesson learned from the study of two-dimensional vasculogenesis is that percolative exponents are an
interesting set of such observables, so we tested the computation of percolative exponents on simulated net-
work structures.

We are working on a more thorough comparison of the geometrical properties of experimental and com-
putational network structures, which will become possible as soon as an adequate amount of experimental
data will be available, allowing proper statistical computation.
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